Property testing: theory and applications
نویسنده
چکیده
Property testers are algorithms that distinguish inputs with a given property from those that are far from satisfying the property. Far means that many characters of the input must be changed before the property arises in it. Property testing was introduced by Rubinfeld and Sudan in the context of linearity testing and first studied in a variety of other contexts by Goldreich, Goldwasser and Ron. The query complexity of a property tester is the number of input characters it reads. This thesis is a detailed investigation of properties that are and are not testable with sublinear query complexity. We begin by characterizing properties of strings over the binary alphabet in terms of their formula complexity. Every such property can be represented by a CNF formula. We show that properties of n-bit strings defined by 2CNF formulas are testable with O( √ n) queries, whereas there are 3CNF formulas for which the corresponding properties require Ω(n) queries, even for adaptive tests. We show that testing properties defined by 2CNF formulas is equivalent, with respect to the number of required queries, to several other function and graph testing problems. These problems include: testing whether Boolean functions over general partial orders are close to monotone, testing whether a set of vertices is close to one that is a vertex cover of a specific graph, and testing whether a set of vertices is close to a clique. Testing properties that are defined in terms of monotonicity has been extensively investigated in the context of the monotonicity of a sequence of integers and the monotonicity of a function over the m-dimensional hypercube {1, . . . , a}m. We study the query complexity of monotonicity testing of both Boolean and integer functions over general partial orders. We show upper and lower bounds for the general problem and for specific partial orders. A few of our intermediate results are of independent interest. 1. If strings with a property form a vector space, adaptive 2-sided error tests for the property have no more power than non-adaptive 1-sided error tests. 2. Random LDPC codes with linear distance and constant rate are not locally testable. 3. There exist graphs with many edge-disjoint induced matchings of linear size. In the final part of the thesis, we initiate an investigation of property testing as applied to images. We study visual properties of discretized images represented by n× n matrices of binary pixel values. We obtain algorithms with the number of queries independent of n for several basic properties: being a half-plane, connectedness and convexity. Thesis Supervisor: Michael Sipser Title: Professor of Mathematics
منابع مشابه
Relationship between topological indices and thermodynamic properties and of the monocarboxylic acids applications in QSPR
Topological indices are the numerical value associated with chemical constitution purporting for correlation of chemical structure with various physical properties, chemical reactivity or biological activity. Graph theory is a delightful playground for the exploration of proof techniques in Discrete Mathematics and its results have applications in many areas of sciences. One of the useful indic...
متن کاملApplication of Graph Theory: Relationship of Topological Indices with the Partition Coefficient (logP) of the Monocarboxylic Acids
It is well known that the chemical behavior of a compound is dependent upon the structure of itsmolecules. Quantitative structure – activity relationship (QSAR) studies and quantitative structure –property relationship (QSPR) studies are active areas of chemical research that focus on the nature ofthis dependency. Topological indices are the numerical value associated with chemical constitution...
متن کاملSzemerédi’s Lemma for the Analyst
Szemerédi’s Regularity Lemma is a fundamental tool in graph theory: it has many applications to extremal graph theory, graph property testing, combinatorial number theory, etc. The goal of this paper is to point out that Szemerédi’s Lemma can be thought of as a result in analysis. We show three different analytic interpretations.
متن کاملCoupled coincidence point in ordered cone metric spaces with examples in game theory
In this paper, we prove some coupled coincidence point theorems for mappings with the mixed monotone property and obtain the uniqueness of this coincidence point. Then we providing useful examples in Nash equilibrium.
متن کاملQuantitative Structure-Property Relationship to Predict Quantum Properties of Monocarboxylic Acids By using Topological Indices
Abstract. Topological indices are the numerical value associated with chemical constitution purporting for correlation of chemical structure with various physical properties, chemical reactivity or biological activity. Graph theory is a delightful playground for the exploration of proof techniques in Discrete Mathematics and its results have applications in many areas of sciences. A graph is a ...
متن کاملReview of the Applications of Exponential Family in Statistical Inference
In this paper, after introducing exponential family and a history of work done by researchers in the field of statistics, some applications of this family in statistical inference especially in estimation problem,statistical hypothesis testing and statistical information theory concepts will be discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003